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Abstract

In this paper, we propose a new full vectorial generalized discontinuous Galerkin beam propagation method (GDG–
BPM) to accurately handle the discontinuities in electromagnetic fields associated with wave propagations in inhomoge-
neous optical waveguides. The numerical method is a combination of the traditional beam propagation method (BPM)
with a newly developed generalized discontinuous Galerkin (GDG) method [K. Fan, W. Cai, X. Ji, A generalized discon-
tinuous Galerkin method (GDG) for Schrödinger equations with nonsmooth solutions, J. Comput. Phys. 227 (2008) 2387–
2410]. The GDG method is based on a reformulation, using distributional variables to account for solution jumps across
material interfaces, of Schrödinger equations resulting from paraxial approximations of vector Helmholtz equations. Four
versions of the GDG–BPM are obtained for either the electric or magnetic field components. Modeling of wave propaga-
tions in various optical fibers using the full vectorial GDG–BPM is included. Numerical results validate the high order
accuracy and the flexibility of the method for various types of interface jump conditions.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In beam propagation methods (BPM) [1,2] using paraxial approximations for wave propagations in optical
waveguides, time harmonic Maxwell’s equations are approximated by Schrödinger equations where the
propagation direction is treated as the time axis. Due to the mismatch of refractive indices in the cross section
of the waveguides, the electromagnetic fields are discontinuous solutions to the Schrödinger equations, a
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property not shared by the probability wave functions of quantum mechanics. Since its introduction by Feit
and Fleck in 1978 [1,2], the BPM has become a very popular method in the engineering communities for mod-
eling optical waveguides. Different variants of the method, using various types of spatial discretization in the
cross section of waveguides, have been proposed, such as the finite element (FE)-BPM [4], the fast Fourier
transform (FFT)-BPM [5] and the finite difference (FD)-BPM [6]. However, discontinuities in fields across
material interfaces have not been addressed so far, and as a result, large errors in numerical solutions may
occur near the material interfaces due to large difference of dielectric constants.

As existing BPMs do not have the capability to treat discontinuities in the electromagnetic fields asso-
ciated with wave propagations in inhomogeneous waveguides, it is our goal in this paper to develop a new
BPM which will allow us to accurately handle those field discontinuities. To achieve this objective, we will
apply a recently developed discontinuous Galerkin method – generalized discontinuous Galerkin (GDG)
method [3] – designed specifically to compute discontinuous solutions of Schrödinger equations. The
GDG method reformulates the Schrödinger equations by incorporating the jump conditions in the solu-
tions and derivatives as Dirac d-source terms on the material interface and treating the solutions to the
Schrödinger equations as generalized functions (distributions). Discontinuous Galerkin projections are then
applied to the reformulated partial differential equations for the generalized functions. In this paper, we will
combine the GDG method and the traditional BPM for computing electromagnetic wave propagations in
inhomogeneous optical waveguides. First, we derive the envelope function formulation as in the traditional
BPM and recast the interface conditions of electromagnetic field components as jump conditions for the
envelope functions for the field components. Those jump conditions are then incorporated into the Schrö-
dinger equations for either the electric or magnetic components, for which the GDG–BPM will be con-
structed. Moreover, by using the Gauss laws for electric and magnetic fields, the equations for Ez or H z

components can be replaced by simple ordinary differential equations in time, thus reducing the computa-
tional costs by one third. In the end, four versions of the vectorial GDG–BPM are obtained where large
jumps in the optical fields and/or their derivatives can be approximated accurately as demonstrated by
various numerical tests.

The paper is organized as follows. In Section 2, we give the envelope formulation for the electromagnetic
fields and derive the corresponding interface jump conditions. In Section 3, we present the GDG–BPM for the
electric field, which employs the paraxial approximations and incorporates the jump conditions for the enve-
lope functions. Section 4 follows similar procedure as in Section 3 for the magnetic field components. Section 5
describes the Galerkin discretization for the PDE systems obtained in Sections 3 and 4. Section 6 contains
numerical studies of the convergence and comparison of the proposed four versions of the GDG–BPM and
provides simulation results of various optical waveguides. Finally, Section 7 gives the conclusion of the
paper.

2. Envelope functions for electromagnetic fields and interface jump conditions

In this section, we present the envelope function formulation used in BPMs for the electromagnetic fields.
We also recast the interface conditions for the electromagnetic fields as jump conditions for the envelope func-
tions. The explicit forms for the jump conditions will then be incorporated into the GDG method in next two
sections.

Fig. 1 shows the cross section X of an optical waveguide with a core X1, a cladding X2 and an interface at
C ¼ X1 \ X2 with an exterior normal direction n ¼ ðnx; nyÞ. As in a traditional BPM for optical waveguides, we
assume that the electric or magnetic field takes the following envelope form, for instance:
~E ¼ ðExðx; y; zÞ;Eyðx; y; zÞ;Ezðx; y; zÞÞ ¼ ðu1ðx; y; zÞ;u2ðx; y; zÞ;u3ðx; y; zÞÞe�ibz; b ¼ bl in Xl; l ¼ 1; 2

ð1Þ

for the electric field. The envelope functions uI are assumed to vary slowly along the propagation direction z,
which will be denoted as the time variable t in the BPM [1,2].

Let us denote the jump of a function u at the position s along n ¼ ðnx; nyÞ on C as
½uðs; tÞ� :¼ uðsþ; tÞ � uðs�; tÞ: ð2Þ
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Fig. 1. Cross section of a cylindrical-core optical fiber.
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Then, for any point ðx�; y�Þ on the interface, for I = 1,2,3, the jump data
fIðx�; y�; tÞ ¼ ½uIðx�; y�; tÞ� ¼ uIðx�þ; y�þ; tÞ � uIðx��; y��; tÞ;

gIðx�; y�; tÞ ¼
ouIðx�; y�; tÞ

on

� �
¼ ouIðx�þ; y�þ; tÞ

on
� ouIðx��; y��; tÞ

on
;

can be shown to satisfy identities based on the interface conditions for the electromagnetic fields and the Max-
well’s equations as follows.

To derive the jump data fI of the electric field, we start from the interface conditions of the electric field
�1E�n ¼ �2Eþn ; E�g ¼ Eþg ; E�z ¼ Eþz ; ð3Þ
where n; g are the local normal and tangential coordinates on the interface C and En ¼ Exnx þ Eyny ,
Eg ¼ �Exny þ Eynx are the normal and the tangential electric field components, respectively. Using the enve-
lope assumption of (1) and denoting
un ¼ u1nx þ u2ny ; ug ¼ �u1ny þ u2nx; Db ¼ b1 � b2; ð4Þ

cf ¼
�1

�2

e�iDbt; ð5Þ
we can get
cf u
�
n ¼ uþn ; e�iDbtu�g ¼ uþg ; e�iDbtu�3 ¼ uþ3 : ð6Þ
From (6), fI can be written in terms of ðu�n ; u�g ; u�3 Þ and ðuþn ; uþg ; uþ3 Þ in a symmetric form
f1

f2

� �
¼ 1

2

nx �ny

ny nx

� � ðcf � 1Þu�n þ ð1� c�1
f Þuþn

ðe�iDbt � 1Þu�g þ ð1� eiDbtÞuþg

 !
;

f3 ¼ 1
2
½ðe�iDbt � 1Þu�3 þ ð1� eiDbtÞuþ3 �;

8><
>: ð7Þ
which expresses the interface conditions (3) of the electric field in terms of the envelope functions.
To derive the jump data gI for the normal derivative of the electric field, we consider the interface condi-

tions of the magnetic field
l1H�n ¼ l2Hþn ; H�g ¼ Hþg ; H�z ¼ Hþz : ð8Þ
With the envelope assumption (1) and the Ampere’s law
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r�~E ¼ �ixl~H ; ð9Þ

defining
cg ¼
l2

l1

e�iDbt; ð10Þ
we get
e�iDbt ou3

og �
oug

ot � ib1ug

� �� ��
¼ ou3

og �
oug

ot � ib2ug

� �� �þ
;

cg
oun

ot � ib1un

� �
� ou3

on

� ��
¼ oun

ot � ib2un

� �
� ou3

on

� �þ
;

cg
oug

on �
oun

og

� ��
¼ oug

on �
oun

og

� �þ
:

8>>>>><
>>>>>:

ð11Þ
From the second equation, g3 can be expressed in terms of
ou�

3

on and
ouþ

3

on in a symmetric form as
g3 ¼
1

2
ð1þ c�1

g Þ
ouþn
ot
� ib2u

þ
n

� �
þ ðcg � 1Þ ou�3

on
� ð1þ cgÞ

ou�n
ot
� ib1u

�
n

� �
þ ð1� c�1

g Þ
ouþ3
on

� �
: ð12Þ
The right-hand side of (12) actually involves time derivatives of u1;u2 on both sides of the interface, which
can be replaced with spatial derivatives by using the time dependent Schrödinger equations for u1;u2 in Sec-
tion 3 (electric field) and Section 4 (magnetic field), respectively.

Next, using the identity
nxg1 þ nyg2 ¼
ouþn
on
�

ou�n
on

ð13Þ� �

and the third equation in (11), after some manipulations, we find g1 and g2 in terms of

ou�
n

on ;
ou�g
on and

ouþ
n

on ;
ouþg
on

� �
in a symmetric form
g1

g2

� �
¼ 1

2

nx �ny

ny nx

� � 2
ouþ

n

on � 2
ou�

n

on

ðcg � 1Þ ou�g
on þ 1� 1

cg

� �
ouþg
on þ 1þ 1

cg

� �
ouþ

n

og � ð1þ cgÞ
ou�

n

og

0
B@

1
CA: ð14Þ
Similarly, the jump data fI for the magnetic field components and gI for their normal derivatives can be
shown to satisfy (7), (12) and (14) with
cf ¼
l1

l2

e�iDbt; cg ¼
�2

�1

e�iDbt: ð15Þ
3. GDG–BPM formulation for the electric field

In this section, we combine the GDG [3] with the BPM to obtain a full vectorial GDG–BPM for optical
waveguides where the electromagnetic fields and/or their derivatives can be discontinuous across material
interfaces. To illustrate the GDG–BPM, we consider the paraxial approximation of a standard cylindrical
optical fiber (Fig. 1).

Assuming that the field is time harmonic with a frequency x and there is no charge nor current sources, we
can derive the vector wave equation for ~Eðx; y; z ¼ tÞ components as
r�r�~E ¼ x2�l~E; ð16Þ

which will leads to
r2~E þ x2�l~E ¼ rðr �~EÞ: ð17Þ

Since r � ð�~EÞ ¼ 0; we have
r �~E ¼ r � 1

�
�~E

� �
¼ � 1

�
ðr� � E

!Þ ¼ �r�̂ �~E; ð18Þ
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where �̂ � ln �. Assuming that � ¼ �ðx; yÞ is uniform along the propagation direction, the vector Helmholtz
equation (17) becomes
r2~E þ x2�l~E ¼ �r o�̂

ox
Ex þ

o�̂

oy
Ey

� �
: ð19Þ
Based on the slow envelope assumption in (1) (paraxial approximation [7]), i.e.
o2uI

ot2

����
����� 2b

ouI

ot

����
����; I ¼ 1; 2; 3; ð20Þ
we ignore the second order derivative in t and obtain the following coupled equations at ðx; yÞ 62 C:
i2b
ou1

ot
¼ o

2u1

ox2
þ o

2u1

oy2
þ ðx2�l� b2Þu1 þ

o
2�̂

ox2
u1 þ

o
2�̂

oxoy
u2 þ

o�̂

ox
ou1

ox
þ o�̂

oy
ou2

ox
; ð21aÞ

i2b
ou2

ot
¼ o2u2

ox2
þ o2u2

oy2
þ ðx2�l� b2Þu2 þ

o2�̂

oxoy
u1 þ

o2�̂

oy2
u2 þ

o�̂

ox
ou1

oy
þ o�̂

oy
ou2

oy
; ð21bÞ

i2b
ou3

ot
¼ o2u3

ox2
þ o2u3

oy2
þ ðx2�l� b2Þu3 þ

o�̂

ox
ou1

ot
� ibu1

� �
þ o�̂

oy
ou2

ot
� ibu2

� �
; ð21cÞ
where b ¼ bl in Xl; l ¼ 1; 2.
For convenience, we define the jump data for the dielectric constant � as
f�̂ðx�; y�; tÞ ¼ ½̂�ðx�; y�; tÞ� ¼ �̂ðx�þ; y�þ; tÞ � �̂ðx��; y��; tÞ;

g�̂ðx�; y�; tÞ ¼
o�̂ðx�; y�; tÞ

on

� �
¼ o�̂ðx�þ; y�þ; tÞ

on
� o�̂ðx��; y��; tÞ

on
:

Following the procedure proposed in [3], we can rewrite the system (21a)–(21c) using Dirac d functions as
Formulation A: For I ¼ 1; 2; 3
i2b
ouI

ot
¼ opI

ox
þ oqI

oy
� dðn� n�Þjrnj2gI þ SI ; ð22aÞ

pI ¼
ouI

ox
� dðn� n�ÞfI

on
ox
; ð22bÞ

qI ¼
ouI

oy
� dðn� n�ÞfI

on
oy
; ð22cÞ
where b ¼ bl in Xl; l ¼ 1; 2 and the jump data fI ; gI are given by (7), (12), (14) with (5), (10) to enforce the
physical jump conditions for the electromagnetic field components. And, the lower order terms above are
S1ðu1;u2; p1; p2Þ ¼ ðx2�l� b2Þu1 þ px
�̂u1 þ qx

�̂u2 þ p�̂p1 þ q�̂p2;

S2ðu1;u2; q1; q2Þ ¼ ðx2�l� b2Þu2 þ py
�̂u1 þ qy

�̂u2 þ p�̂q1 þ q�̂q2;

S3ðu1;u2;u3Þ ¼ ðx2�l� b2Þu3 þ p�̂
ou1

ot
� ibu1

� �
þ q�̂

ou2

ot
� ibu2

� �
;

where ou1

ot and ou2

ot in S3 can be replaced by (22a) with I ¼ 1; 2 and
p�̂ ¼
o�̂

ox
� dðn� n�Þf�̂

on
ox
; q�̂ ¼

o�̂

oy
� dðn� n�Þf�̂

on
oy
; px

�̂ ¼
op�̂
ox
� dðn� n�Þ of�̂

ox
þ g�̂

on
ox

� �
on
ox
;

py
�̂ ¼

op�̂
oy
� dðn� n�Þ of�̂

ox
þ g�̂

on
ox

� �
on
oy
; qx

�̂ ¼
op�̂
ox
� dðn� n�Þ of�̂

oy
þ g�̂

on
oy

� �
on
ox
;

qy
�̂ ¼

op�̂
oy
� dðn� n�Þ of�̂

oy
þ g�̂

on
oy

� �
on
oy
:

Here, p�̂; q�̂; p
x
�̂ ; p

y
�̂ ; q

x
�̂ ; q

y
�̂ will be zero if � is a piecewise constant.
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Remark 1. In the above derivations, partial derivatives of f ðx; yÞ on C are used while the data f ðx; yÞ is only
given on the interface C. Therefore, some types of smooth extension away from the interface will be needed to
yield those partial derivatives. The simplest one, which we use, is to use a constant extension locally along the
normal direction of the interface C, i.e., assuming of

on ¼ 0. Then, we have
of
ox
¼ of

on
on
ox
þ of

og
og
ox
¼ of

og
og
ox
;

of
oy
¼ of

on
on
oy
þ of

og
og
oy
¼ of

og
og
oy
: ð23Þ
The extension is by no means unique. However, the accuracy of the resulting numerical methods will not be
affected by a specific choice of the extension as long as the extension produces a locally smooth function.

Remark 2. As u; p; q are considered piecewise continuous functions over X, ou
ox ;

op
ox will be treated as distribu-

tions or generalized functions [8]. The key idea here is the usage of the d source terms to compensate the sin-
gularity introduced by the (time dependent) jump conditions at the interface. Those d-functions act as penalty
terms in the ‘‘collocation” sense to enforce the solution jump conditions. In contrast, the traditional interior
penalty method [9–14] uses Lagrange multipliers to enforce the ‘‘continuity” of the solutions.

Alternatively, we can use the Gauss law r � ð�EÞ ¼ 0 to solve for the Ez component, which results in the
following equation for u3ðx; y; z :¼ tÞ:
�
ou3

ot
¼ �� ou1

ox
� � ou2

oy
� �xu1 � �yu2 � ð�t � ib�Þu3: ð24Þ
If the evolution Eq. (24) is used for u3, instead of (22a)–(22c), we will have the following alternative version
of the GDG–BPM for the electric field.

Formulation B: For I ¼ 1; 2,
i2b
ouI

ot
¼ opI

ox
þ oqI

oy
� dðn� n�Þjrnj2gI þ SI ; ð25aÞ

�
ou3

ot
¼ ��p1 � �q2 � �xu1 � �yu2 � ð�t � ib�Þu3; ð25bÞ

pI ¼
ouI

ox
� dðn� n�ÞfI

on
ox
; ð25cÞ

qI ¼
ouI

oy
� dðn� n�ÞfI

on
oy
; ð25dÞ
where b ¼ bl in Xl; l ¼ 1; 2.
The time evolution equation for u3 in Formulation B is a simple ODE, thus requiring less computational

cost compared to the corresponding equation for u3 in Formulation A.

4. GDG–BPM formulation for the magnetic field

Similarly, we can get a vector wave equation for ~H components as
r� 1

�
r� ~H

� �
¼ x2l~H : ð26Þ
Assuming that l is a constant (implying r � ~H ¼ 0), we get
r� 1

�
r� ~H

� �
¼ � 1

�
r2~H þ r 1

�

� �
� ðr � ~HÞ: ð27Þ
Therefore, we have
1

�
r2~H ¼ r 1

�
� ðr � ~HÞ � x2l~H : ð28Þ
Again, we assume ~H has an envelope formulation as
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~H ¼ ðH xðx; y; zÞ;H yðx; y; zÞ;Hzðx; y; zÞÞ ¼ ðu1ðx; y; zÞ;u2ðx; y; zÞ;u3ðx; y; zÞÞe�ibz; b ¼ bl in Xl; l ¼ 1; 2:

ð29Þ

Then, by dropping the term o2uI

oz2 based on the paraxial approximation, replacing z by t and assuming that
�̂ � ln � is independent of z, we get the following coupled equations at ðx; yÞ 62 C:
i2b
ou1

ot
¼ o2u1

ox2
þ o2u1

oy2
þ ðx2�l� b2Þu1 þ

o�̂

oy
ou2

ox
� ou1

oy

� �
; ð30aÞ

i2b
ou2

ot
¼ o2u2

ox2
þ o2u2

oy2
þ ðx2�l� b2Þu2 �

o�̂

ox
ou2

ox
� ou1

oy

� �
; ð30bÞ

i2b
ou3

ot
¼ o2u3

ox2
þ o2u3

oy2
þ ðx2�l� b2Þu3 þ

o�̂

ox
ou1

ot
� ibu1 �

ou3

ox

� �
þ o�̂

oy
ou2

ot
� ibu2 �

ou3

oy

� �
; ð30cÞ
where b ¼ bl in Xl; l ¼ 1; 2.
For the interface conditions, similar to the previous section, we use fI and gI to denote the jumps of uI and

ouI
on on the interface, respectively.

Now, we use the d-function and auxiliary variables p and q to rewrite (30a)–(30c) as
Formulation C: For I ¼ 1; 2; 3,
i2b
ouI

ot
¼ opI

ox
þ oqI

oy
� dðn� n�Þjrnj2gI þ SI ; ð31aÞ

pI ¼
ouI

ox
� dðn� n�ÞfI

on
ox
; ð31bÞ

qI ¼
ouI

oy
� dðn� n�ÞfI

on
oy
; ð31cÞ
where b ¼ bl in Xl; l ¼ 1; 2; and the jump data fI ; gI again are given by (7), (12), (14) with (15) to enforce the
physical interface conditions for the electromagnetic field components. The lower order source terms are given
as
S1ðu1;u2; p2; q1Þ ¼ ðx2�l� b2Þu1 þ q�̂ðp2 � q1Þ;
S2ðu1;u2; p2; q1Þ ¼ ðx2�l� b2Þu2 � p�̂ðp2 � q1Þ;

S3ðu1;u2;u3; p3; q3Þ ¼ ðx2�l� b2Þu3 þ p�̂
ou1

ot
� ibu1 � p3

� �
þ q�̂

ou2

ot
� ibu2 � q3

� �
;

where ou1

ot and ou2

ot in S3 can be replaced by (31a) and
p�̂ ¼
o�̂

ox
� dðn� n�Þf�̂

on
ox
; q�̂ ¼

o�̂

oy
� dðn� n�Þf�̂

on
oy
:

p�̂; q�̂ will be zero if � is a piecewise constant.
Similarly, we can solve the H z component in terms of H x and Hy using r � H ¼ 0 and obtain
ou3

ot
¼ � ou1

ox
� ou2

oy
þ ibu3: ð32Þ
As a result, we have the following alternative formulation for the magnetic field.
Formulation D: For I ¼ 1; 2,
i2b
ouI

ot
¼ opI

ox
þ oqI

oy
� dðn� n�Þjrnj2gI þ SI ; ð33aÞ

ou3

ot
¼ �p1 � q2 þ ibu3; ð33bÞ
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pI ¼
ouI

ox
� dðn� n�ÞfI

on
ox
; ð33cÞ

qI ¼
ouI

oy
� dðn� n�ÞfI

on
oy
; ð33dÞ
where b ¼ bl in Xl; l ¼ 1; 2.
Again, the time evolution equation for u3 in Formulation D is a simple ODE, thus requiring less computa-

tional cost compared with the corresponding equation for u3 in Formulation C.

5. Discontinuous Galerkin discretization

In this section, we present the procedure of discontinuous Galerkin projection [15] based on Formulation A

(22a)–(22c) while the same procedure can be applied to Formulations B–D.
For each element K in the discretization of X, let P J ðKÞ denote the space of polynomials in K of degree at

most J and v 2 L1ðXÞ be a test function, where vjK 2 P J ðKÞ. Multiplying the Eqs. (22a)–(22c) by the test func-
tion vðx; yÞ and integrating by parts in K, we get
i2b
Z

K

ouI

ot
vdxdy ¼

Z
oK

hx
uI

vnx ds�
Z

K
pI

ov
ox

dxdy þ
Z

oK
hy

uI
vny ds�

Z
K

qI

ov
oy

dxdy þ
Z

K
SIvdxdy; ð34aÞ

Z
K

pI vdxdy ¼
Z

oK
hpI

vnx ds�
Z

K
uI

ov
ox

dxdy; ð34bÞ
Z

K
qIvdxdy ¼

Z
oK

hqI
vnyds�

Z
K

uI
ov
oy

dxdy; ð34cÞ
where ðhx
uI
; hy

uI
; hpI
¼ hqI

Þ are numerical fluxes, which approximate ðpI ; qI ;uIÞ at oK. For~x ¼ ðx; yÞ 2 oK
hx
uI
ð~x	Þ ¼ fpIg 	 ax

I ; h
y
uI
ð~x	Þ ¼ fqIg 	 ay

I ; hpI
ð~x	Þ ¼ fuIg 	 bI ; ð35Þ
where ax
I ; a

y
I ; bI are defined as
ðax
I ; ay

I ; bIÞ ¼
1
2
gI jrnjnx;

1
2
gI jrnjny ;

1
2
fI

	 

; if C \ K 6¼ ;

ð0; 0; 0Þ; if C \ K ¼ ;

�
: ð36Þ
In the definition of the numerical fluxes (35), simple averages are used for all element edges of K except the
edge coinciding with the material interface C where average plus/minus half of the jumps will be used. The
definition and derivation of the fluxes in (34a)–(34c) can be found in [3].

Let /jðx; yÞ, j ¼ 0; 1; . . . ; nJ be the basis functions, where nJ þ 1 is the number of basis functions required
for a Jth order approximation. By expanding uI ; pI ; qI as
uI ¼
XnJ

j¼0

uI ;jðtÞ/jðx; yÞ; qI ¼
XnJ

j¼0

qI ;jðtÞ/jðx; yÞ; pI ¼
XnJ

j¼0

pI ;jðtÞ/jðx; yÞ ð37Þ
and choosing the test function vðx; yÞ ¼ /lðx; yÞ for l ¼ 0; 1; . . . ; nJ , we get
i2b
X

j

mlj
duI;j

dt
¼
Z

oK
ðhx

uI
nx þ hy

uI
nyÞ/l ds�

X
j

ðmx
ljpI;j þ my

ljqI;j þ sI;lÞ; ð38aÞ

X
j

mljpI;j ¼
Z

oK
hpI

nx/l ds�
X

j

mx
ljuI ;j; ð38bÞ

X
j

mljqI;j ¼
Z

oK
hqI

ny/l ds�
X

j

my
ljuI;j; ð38cÞ
where sI ;l ¼
R

K SI/l dxdy and
mlj ¼
Z

K
/l/j dxdy; mx

lj ¼
Z

K

o/l

ox
/j dxdy; my

lj ¼
Z

K

o/l

oy
/j dxdy: ð39Þ
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We define a mass matrix M and two stiff matrices Mx;My as
M ¼ ðmiþ1;jþ1Þ; Mx ¼ ðmx
iþ1;jþ1Þ; My ¼ ðmy

iþ1;jþ1Þ ð40Þ

and vectors, for I ¼ 1; 2; 3,
~uI ¼ ½uI ;0; . . . ;uI ;nJ
�T; ~/ ¼ ½/0; . . . ;/nJ

�T; ~pI ¼ ½pI ;0; . . . ; pI;nJ
�T;

~qI ¼ ½qI;0; . . . ; qI ;nJ
�T; ~sI ¼ ½sI;0; . . . ; sI;nJ �

T
:

The following system of ODEs is obtained in each K for I ¼ 1; 2; 3:
i2b
d~uI

dt
¼ M�1

Z
oK
ðhx

uI
nx þ hy

uI
nyÞ~/ds�Mx~pI �My~qI � sI

!
� �

; ð41Þ

~pI ¼ M�1

Z
oK

hpI
nx
~/ds�Mx~uI

� �
; ð42Þ

~qI ¼ M�1

Z
oK

hqI
ny
~/ds�My~uI

� �
: ð43Þ
Remark 3. Formulations A–D can all be written for the primary variable ~u, after eliminating the auxiliary
variables p and q, in the form of
d~u
dt
¼ L~u; ð44Þ
where L is the discretization matrix for the variable ~u.
6. Numerical results

In the following numerical tests, the time derivatives are discretized with a fourth order Runge–Kutta
method and the time step Dt is estimated based on an empirical formula Dt 6 ðDxÞ2ð2J þ 1Þ2=kmax where
Dx is the element size and kmax is the largest magnitude of the eigenvalues of the matrix L in (44). All the results
are reported after propagation for a 1 cm distance unless specified otherwise. In all the numerical simulations,
we choose b1 ¼ b2 ¼ b�, where b� is the propagation constant. In Sections 6.1 and 6.2, exact boundary con-
dition is used. Meanwhile, in Sections 6.3 and 6.4, as there is no exact solutions, standard transparent bound-
ary condition (TBC) [16] is applied.

6.1. Propagation of LP01 modes using the electric field

In this section, we test the GDG–BPM on the LP01 mode in a cylindrical fiber (Fig. 1) with
X1 ¼ fðx; yÞjx2 þ y2
6 r0g; X2 ¼ fðx; yÞjr0 6 x2 þ y2

6 Rg: ð45Þ

Denoting J nðrÞ – the nth order Bessel function of the first kind and KnðrÞ – the nth order modified Bessel

function of the second kind, then, the LP01 mode for the electric components is given by
u1ðx; y; tÞ ¼
� 1�s

2
J 0

a1

r0
r

� �
cosðHÞ � 1þs

2
J 2

a1

r0
r

� �
cosð2hþHÞ

h i
F 1ðtÞ; in X1;

� 1�s
2

K0
a2

r0
r

� �
cosðHÞ þ 1þs

2
K2

a2

r0
r

� �
cosð2hþHÞ

h i
F 2ðtÞ; in X2;

8><
>:

u2ðx; y; tÞ ¼
1�s

2
J 0

a1

r0
r

� �
sinðHÞ þ 1þs

2
J 2

a1

r0
r

� �
sinð2hþHÞ

h i
F 1ðtÞ; in X1;

1�s
2

K0
a2

r0
r

� �
sinðHÞ � 1þs

2
K2

a2

r0
r

� �
sinð2hþHÞ

h i
F 2ðtÞ; in X2;

8><
>:

u3ðx; y; tÞ ¼
ib� r0

a1

� ��1

J 1
a1

r0
r

� �
cosðhþHÞF 1ðtÞ; in X1;

ib� r0

a2

� ��1

K1
a2

r0
r

� �
cosðhþHÞF 2ðtÞ; in X2;

8><
>:
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where the time dependent factors F 1ðtÞ and F 2ðtÞ and three parameters s; a1; a2 are given as
F 1ðtÞ ¼ ib�
r0

a1

eiðb1�b�Þt; F 2ðtÞ ¼ ib�
r0

a2

J 1ða1Þ
K1ða2Þ

eiðb2�b�Þt; ð46Þ

s ¼ �1þ a2
1a

2
2

a2
1 þ a2

2

J 0ða1Þ
a1J 1ða1Þ

� 1� �2

�1

� �
; ð47Þ

a1 ¼ r0ðx2�1l1 � b�2Þ
1
2; a2 ¼ r0ðb�2 � x2�2l2Þ

1
2: ð48Þ
The parameter b� is the propagation constant in the z direction and is solved from the continuity of the
tangential component of field at the interface r0, i.e. b� is the root of
J 0ða1Þ
a1J 1ða1Þ

¼ �2

�1

K0ða2Þ
a2K1ða2Þ

:

Remark 4. Here H ¼ 0 and H ¼ p=2 correspond to the x-polarized ðHEx
11Þ mode and the y-polarized ðHEy

11Þ
mode.

In the numerical test, ~uðz � t ¼ 0Þ is used as the initial condition and the exact boundary condition at r ¼ R
is used. For both Formulations A and B, the parameters are chosen as H ¼ 0; the radius of core: r0 ¼ 10 lm;
the radius of cladding: R ¼ 20 lm; the wave length: k ¼ 1 lm; the wave number k0 ¼ 2p

k ; the dielectric constant
in the core: �1 ¼ 1:552; the dielectric constant in the cladding: �2 ¼ 1:5452.
Fig. 2. Cylindrical-core case: Results by Formulation A.
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Using Formulation A with a third order spatial approximation, Fig. 2 shows the intensity contours for each
component and the overall relative error. Formulation B gives similar results. Fig. 4(a) shows the exponential
convergence of the L2 error for both Formulations A and B. However, compared with Formulation A, Formu-

lation B has a larger error. That is due to the fact that divergence-free condition is used to obtain for the Ez

component and the divergence condition is no longer exact after the paraxial approximation.

6.2. Propagation of LP01 modes using the magnetic field

Similarly, with the same definition for s, a1 and a2 as above, the LP01 mode for the magnetic component is
given as
u1ðx; y; tÞ ¼
1�s1

2
J 0

a1

r0
r

� �
sinðHÞ þ 1þs1

2
J 2

a1

r0
r

� �
sinð2hþHÞ

h i
G1ðtÞ; in X1;

1�s2

2
K0

a2

r0
r

� �
sinðHÞ � 1þs2

2
K2

a2

r0
r

� �
sinð2hþHÞ

h i
G2ðtÞ; in X2;

8><
>:

u2ðx; y; tÞ ¼
1�s1

2
J 0

a1

r0
r

� �
cosðHÞ � 1þs1

2
J 2

a1

r0
r

� �
cosð2hþHÞ

h i
G1ðtÞ; in X1;

1�s2

2
K0

a2

r0
r

� �
cosðHÞ þ 1þs2

2
K2

a2

r0
r

� �
cosð2hþHÞ

h i
G2ðtÞ; in X2;

8><
>:

u3ðx; y; tÞ ¼
ib�n2

1
r0

a1

� ��1

sJ 1
a1

r0
r

� �
sinðhþHÞG1ðtÞ; in X1;

ib�n2
2

r0

a2

� ��1

sK1
a2

r0
r

� �
sinðhþHÞG2ðtÞ; in X2;

8>><
>>:
where the time dependent factors G1ðtÞ, G2ðtÞ and two parameters s1; s2 are given as
G1ðtÞ ¼ �ix�2n2
1

r0

a1

eiðb1�b�Þt; s1 ¼
b�

2

x2�1

s; ð49Þ

G2ðtÞ ¼ �ix�2n2
2

r0

a2

J 1ða1Þ
K1ða2Þ

eiðb2�b�Þt; s2 ¼
b�

2

x2�2

s: ð50Þ
With the same set of parameters as used for the electric field, we test Formulations C and D. Fig. 3 shows the
componentwise intensity contours and the overall relative error with a third order spatial approximation.
Again, we omit the similar plots by Formulation D. Fig. 4(b) shows the exponential convergence of L2 error
for both Formulations C and D. Same as for the electric field, Formulation D produces a larger error.

Remark 5. Due to the error introduced by the paraxial approximation in the divergence condition,
Formulation B (or D) will be less accurate than Formulation A (or C). However, if the extra error is within a
given error tolerance, one should use Formulation B (or D) for its simplicity and saving in the computational
time.
6.3. Propagation of LP01 modes in rectangular core waveguide

To show GDG–BPM’s ability of handling other shapes of interfaces, we replace the cylindrical core by a
square core with the same core area and still propagate the LP01 mode given in Section 6.1 for the cylindrical-
core fiber. Since there is no exact solution, the numerical solutions from a coarse mesh and a fine mesh
(Fig. 5(a)) are compared. The relative error plot by Formulation A with third order spatial approximation
is given in Fig. 5(b). And the exponential decay of the L2 error is also observed.

6.4. Propagation of LP01 modes in media with large index jump

To demonstrate the GDG–BPM’s ability in dealing with large index jump, we extend our computational
domain to include a layer of air next to the cladding of the cylindrical core fiber considered in Sections 6.1



Fig. 4. Cylindrical-core case: Exponential decay of the L2 error with increasing order of basis.

Fig. 3. Cylindrical-core case: Results by Formulation C.
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and 6.2. As shown in Fig 6(a), the central circle ðr 6 10 lmÞ is the core with dielectric constant � ¼ 1:552; the
next ring ð10 lm 6 r 6 20 lmÞ is the cladding with � ¼ 1:5452 and the outer ring ð20 lm 6 r 6 25 lmÞ is the
air with � ¼ 1:0. A large index jump is present at the air-cladding interface. With the transparent boundary
condition used at r ¼ 25 lm, the LP01 mode given in Section 6.1 is launched as the initial condition.



Fig. 5. Square-core case: Results by Formulation A.

Fig. 6. Cylindrical-core with air case: Results by Formulation A.
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Numerical convergence study by Formulation A with a third order spatial approximation is done on two
meshes. Fig. 6(b) is the 1-D intensity plot for the Ex component, with a clear view of the discontinuity captured
at the air-cladding interface. Fig 6(c) is the relative error of the intensity of the Ex component from coarse and
fine meshes, which shows the high accuracy especially at the interface r ¼ 2 lm of large index difference. The
bigger error near the outer boundary is introduced by the transparent boundary condition.

7. Conclusion

In this paper, we proposed a new kind of beam propagation method combined with a generalized discon-
tinuous Galerkin discretization for full vectorial simulations of electromagnetic wave propagations in inhomo-
geneous optical waveguides. The resulting GDG–BPM takes on four formulations for either electric or
magnetic fields. Numerical results, with different shapes of interface and magnitude of jumps, demonstrate
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the GDG–BPM’s unique feature of handling interface jump conditions and its flexibility and high order
accuracy.
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